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Abstract. All possible cylindrical configurations of classical Nambu–Goto–Polyakov string
theory are obtained. Their cross sections are shown to be different lines which can be classified
into eight different types: straight, undulating, positively self-intersecting, eight-like, negatively
self-intersecting, buckling, nodoid-like and circular. These lines have the same shapes as elastic
thin rods or strings which were known a century ago.

Classical string [1] with rigidity has attracted much attention [2–6] since the pioneering work
of Polyakov [2]. A very recent attempt at such a kind of string theory with a brief review can
be found in [6]. However, few results concerning its classical configurations (worldsheets) and
analysis of their properties have been obtained [5]. In this paper, we give all possible classical
cylindrical configurations in the standard Nambu–Goto–Polyakov string, which is the simplest
classical string with a rigidity. By cylindrical configuration, we mean that the configuration is
independent of theZ axis and the regular circular cylinder with circular cross section in the
X–Y plane is only a special case of the configurations.

The simplest classical string with a rigidity, or the standard Nambu–Goto–Polyakov string,
takes the action [1,2,5]

S = 1

α0

∫
H 2 dA +µ0

∫
dA (1)

where dA is the area element,H is the mean curvature,α0 andµ0 are two coupling constants.
The corresponding Euler–Lagrange equation is [5, 7, 8]

52H + 2H(H 2 −K)− 2α0µ0H = 0 (2)

where52 = 1√
g
∂i(g

ij√g∂j ) is the Laplace–Beltrami operator,K is the Gaussian curvature.
The physical parameter is the product of two constants,µ0α0, which is also called a coupling
constant and is denoted byC, which may be positive, negative or zero [1,2].

Since we limit ourself to the cylindrical case, we have zero-Gaussian curvatureK = 0,
and the general parametric form describing the cylindrical configuration is

R = (X(s), Y (s), Z) −∞ < s <∞ −∞ < Z <∞. (3)

The first and second fundamental forms are

I = ds2 + dZ2

II = (X′′Y ′ − Y ′′X′) ds2 (4)
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where the prime ‘′ ’ stands for the derivative with respect to parameters. The second
fundamental form can be simplified if we take the parameters as the arc-length of the curve
representing the cross section (in theX–Y plane) of the cylindrical worldsheet. Thus, we have

dX

ds
= cosψ(s)

dY

ds
= sinψ(s) (5)

whereψ(s) is the angle of the tangent measured from theX-axis. The mean curvatureH is

H = −1

2

dψ(s)

ds
. (6)

This leads to a useful relation
dH

ds
= dH

dψ

dψ

ds
= −dH 2

dψ
. (7)

Only those configurations satisfying the Euler–Lagrange equation (2) are stable. In our
cylindrical case, equation (2) becomes

d2H

ds2
+ 2H 3− 2CH = 0. (8)

The first integral gives(
dH

ds

)2

= 2CH 2 −H 4 + c1 (9)

wherec1 is an integral constant. From equation (6), we have

dH 2

dψ
= ±(2CH 2 −H 4 + c1)

1/2. (10)

Before transforming the above equation into the following elementary integral

dH 2

(2CH 2 −H 4 + c1)1/2
= ±dψ (11)

we must check whether the roots of the following equation, 2CH 2−H 4 +c1 = 0, are possible
solutions of equation (8). It is easy to realize that there are two important solutions:

ψ(s) = cr1 ψ(s) = ±2
√
Cs + cr2 (12)

where cr1 and cr2 are two integral constants. These two solutions correspond to flat
planes and regular circular cylinders, respectively. The radii of the circular cylinders are
1/(2
√
C)(C > 0). Then we give the results of integral (11) as

H 2 = C +
√
C2 + c1 sin(±ψ + c2) (13)

wherec2 is another integral constant, but its choice is a matter of deciding the direction of the
X-axis from which the angleψ is measured; we can therefore putc2 = 0. The same applies
to the choice of the positive or negative sign beforeψ . Thus, it suffices to study the following
equation:

H 2 = C +
√
C2 + c1 sinψ. (14)

From equation (6) it becomes(
−1

2

dψ(s)

ds

)2

= C +
√
C2 + c1 sinψ (15)

i.e.,
dψ

(C +
√
C2 + c1 sinψ)1/2

= ±2 ds. (16)
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Figure 1. Cross sections of the possible classical configurations
of string theory. All these curves, except (c) and (e), are periodic
horizontally.

Detailing the sign of± before ds is a matter of choosing the direction of the angleψ , we
therefore choose the positive sign for convenience. Multiplying both sides of the above equation
by cosψ , we have

d sinψ(
C +

√
C2 + c1 sinψ

)1/2 = 2 dX (17)

i.e.,

sinψ =
√
C2 + c1(X −X0)

2 − C (18)

whereX0 is an integral constant which can be chosen as zero. This equation can give the cross
sections of all possible classical cylindrical configurations except the regular circular cylinder.
By using equation (5) in the following integral form

Y (X)− Y (X0) =
∫ X

X0

tanψ dX (19)

we can obtain all kinds of curves of the cross sections in theX–Y plane. In figure 1, we show
six different typical types of these curves. Among these curves, the one shown by figure 1(a) is
the only type which is not self-intersecting; and all curves except those shown by figures 1(c)
and (e) can be viewed as basic units which are periodic horizontally, i.e. periodic in theY -axis
direction.

These curves appear very complicated. In order to obtain a quick understanding, it is
helpful to look at these curves via the relation of tangent angleψ in terms of the arc-length,
instead of theX-axis coordinate. The direct integral of the differential equation (16) can lead
to the following results:

sinψ = 1− 2 sn2

[
2
(
C +

√
C2 + c1

)1/2
s, k1

]
for c1 < 0 andC > 0 (20)

tanψ = exp
(√

2Cs
)

for c1 = 0 andC > 0 (21)

sinψ = 1− k2
2 sn2[

√
2(C2 + c1)

1/4s, k2] for c1 > 0, wheneverC > 0 orC < 0 (22)

where sn[s, k] is the Jacobian elliptic sine function, and the two modulik1 andk2 are(
2
√
C2 + c1

(C +
√
C2 + c1)

)1/2

and

(
C +

√
C2 + c1

2
√
C2 + c1

)1/2
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respectively. Since the elliptic function is a periodic function, we can see that in casec1 6= 0,
the curves are periodic. The curvaturesc = dψ/ds are respectively given by

c = −2
(
C +

√
C2 + c1

)1/2
dn2

[
2
(
C +

√
C2 + c1

)1/2
s, k1

]
for c1 < 0 andC > 0

(23)

c = 2
√

2C sech
√

2Cs for c1 = 0 andC > 0 (24)

c = −2k2

√
2(C2 + c1)

1/4 cn2[
√

2(C2 + c1)
1/4s, k2]

for c1 > 0 wheneverC > 0 orC < 0. (25)

The anglesψ0 =
∫ T

0 c ds rotated in one periodT , are accordingly:

ψ0 = 2π for c1 < 0 andC > 0 (26)

ψ0 = 2π for c1 = 0 andC > 0 (27)

ψ0 = 0 for c1 > 0 wheneverC > 0 orC < 0. (28)

Using this rotation angleψ0, we can easily understand these configurations. WhenC < 0
andc1 > 0, the curves take undulation shapes as shown in figure 1(a). WhenC > 0 and
c1 > 0, with c1 decreasing from a relatively large value, the curves not only take undulation
shapes as shown in figure 1(a), but also take the positively self-intersecting shapes as shown in
figure 1(b), eight-like shapes as shown in figure 1(c) and negatively self-intersecting shapes as
shown in figure 1(d). Both figures 1(b) and (d) are self-intersecting, but figure 1(b) is positively
self-intersecting and figure 1(d) is the negatively self-intersecting. Whenc1 = 0, the period
is infinity; and the curve takes a buckling shape as shown in figure 1(e). Whenc1 < 0 and
C > 0, the curve takes nodoid-like shapes as shown in figure 1(f ). Besides, when the coupling
constantC > 0, we can have the regular circular cylinder. Whenever the coupling constant is
positive, negative or zero, the flat plane is always a possible configuration.

Finally, we would like to point out the fact that the results of this paper have some
significance in two other seemingly distinct areas. First, all configurations in figure 1 offer
an exhaustive representation of the types of shapes of elastic thin rods or strings, which have
been known since the last century, with an entirely different treatment [9]. Second, if taking
two constants 1/α0 andµ0 in equation (1) as the bending stiffness and the surface tension
coefficients, respectively, the energy functional for biomembranes with the zero-spontaneous
curvature and zero-osmotic pressure difference share exactly the same form as equation (1).
The undulation shapes in figure 1 were observed in an egg lecithin swelling in excess water [10],
as pointed out in [11].
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